1,191 research outputs found

    Fractoluminescence characterization of the energy dissipated during fast fracture of glass

    Full text link
    Fractoluminescence experiments are performed on two kinds of silicate glasses. All the light spectra collected during dynamic fracture reveal a black body radiator behaviour, which is interpreted as a crack velocity-dependent temperature rise close to the crack tip. Crack velocities are estimated to be of the order of 1300 m.s1^{-1} and fracture process zones are shown to extend over a few nanometers.Comment: Accepted for publication in Europhysics Letters; 5 pages; 4 figure

    “Angular resolution expected from iCHORD orientation maps through a revisited ion channeling model”

    Get PDF
    International audienceCrystalline orientation maps are obtained in a Focused Ion Beam (FIB) microscope using the ion CHanneling ORientation Determination (iCHORD) method, which relies on the channeling phenomenon observed in ion-induced secondary electron images. The current paper focuses on the angular resolution that can be expected from such orientation maps, obtained using a revisited ion channeling model. A specific procedure was developed to evaluate the angular resolution, based on the distribution of orientation errors when evaluating controlled sample disorientation. The main advantage is that no external reference is required. An angular resolution of 1° is obtained on a nickel based sample using standard acquisition conditions. This value fulfills most of the needs in terms of microstructural characterization usually carried out by Electron Back Scattered Diffraction

    ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach

    Get PDF
    Abstract Background Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having microsatellite instability (MSI). Therefore, MSI is a marker of dMMR. MSI/dMMR can be identified using immunohistochemistry to detect loss of MMR proteins and/or molecular tests to show microsatellite alterations. Together with tumour mutational burden (TMB) and PD-1/PD-L1 expression, it plays a role as a predictive biomarker for immunotherapy. Methods To define best practices to implement the detection of dMMR tumours in clinical practice, the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project, based on a systematic review-approach, to generate consensus recommendations on the: (i) definitions related to the concept of MSI/dMMR; (ii) methods of MSI/dMMR testing and (iii) relationships between MSI, TMB and PD-1/PD-L1 expression. Results The MSI-related definitions, for which a consensus frame-work was used to establish definitions, included: 'microsatellites', 'MSI', 'DNA mismatch repair' and 'features of MSI tumour'. This consensus also provides recommendations on MSI testing; immunohistochemistry for the mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 represents the first action to assess MSI/dMMR (consensus with strong agreement); the second method of MSI/dMMR testing is represented by polymerase chain reaction (PCR)-based assessment of microsatellite alterations using five microsatellite markers including at least BAT-25 and BAT-26 (strong agreement). Next-generation sequencing, coupling MSI and TMB analysis, may represent a decisive tool for selecting patients for immunotherapy, for common or rare cancers not belonging to the spectrum of Lynch syndrome (very strong agreement). The relationships between MSI, TMB and PD-1/PD-L1 expression are complex, and differ according to tumour types. Conclusions This ESMO initiative is a response to the urgent questions raised by the growing success of immunotherapy and provides also important insights on the relationships between MSI, TMB and PD-1/PD-L1

    The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    Get PDF
    Background: Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results: Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions: We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Impact of the Specific Mutation in KRAS Codon 12 Mutated Tumors on Treatment Efficacy in Patients with Metastatic Colorectal Cancer Receiving Cetuximab-Based First-Line Therapy: A Pooled Analysis of Three Trials

    Get PDF
    Purpose: This study investigated the impact of specific mutations in codon 12 of the Kirsten-ras (KRAS) gene on treatment efficacy in patients with metastatic colorectal cancer (mCRC). Patients: Overall, 119 patients bearing a KRAS mutation in codon 12 were evaluated. All patients received cetuximab-based first-line chemotherapy within the Central European Cooperative Oncology Group (CECOG), AIO KRK-0104 or AIO KRK-0306 trials. Results: Patients with KRAS codon 12 mutant mCRC showed a broad range of outcome when treated with cetuximab-based first-line regimens. Patients with tumors bearing a KRAS p.G12D mutation showed a strong trend to a more favorable outcome compared to other mutations (overall survival 23.3 vs. 14-18 months; hazard ratio 0.66, range 0.43-1.03). An interaction model illustrated that KRAS p.G12C was associated with unfavorable outcome when treated with oxaliplatin plus cetuximab. Conclusion: The present analysis suggests that KRAS codon 12 mutation may not represent a homogeneous entity in mCRC when treated with cetuximab-based first-line therapy. Copyright (C) 2012 S. Karger AG, Base
    corecore